这题用笔推一下就懂了的。。。。
当2|(n-k)时,才能分,否则不能分。
那么dfs即可。。
#include#include #include #include #include #include using namespace std;#define rep(i, n) for(int i=0; i<(n); ++i)#define for1(i,a,n) for(int i=(a);i<=(n);++i)#define for2(i,a,n) for(int i=(a);i<(n);++i)#define for3(i,a,n) for(int i=(a);i>=(n);--i)#define for4(i,a,n) for(int i=(a);i>(n);--i)#define CC(i,a) memset(i,a,sizeof(i))#define read(a) a=getint()#define print(a) printf("%d", a)#define dbg(x) cout << #x << " = " << x << endl#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }inline const int max(const int &a, const int &b) { return a>b?a:b; }inline const int min(const int &a, const int &b) { return a k && !((n-k)&1)) { int a=(n-k)>>1; dfs(a); dfs(n-a); } else ++ans;}int main() { int n=getint(); read(k); dfs(n); print(ans); return 0;}
Description
约 翰的N(1≤N≤1,000,000,000)只奶牛要出发去探索牧场四周的土地.她们将沿着一条路走,一直走到三岔路口(可以认为所有的路口都是这样 的).这时候,这一群奶牛可能会分成两群,分别沿着接下来的两条路继续走.如果她们再次走到三岔路口,那么仍有可能继续分裂成两群继续走. 奶牛的 分裂方式十分古怪:如果这一群奶牛可以精确地分成两部分,这两部分的牛数恰好相差K(1≤K≤1000),那么在三岔路口牛群就会分裂.否则,牛群不会分 裂,她们都将在这里待下去,平静地吃草. 请计算,最终将会有多少群奶牛在平静地吃草.
Input
两个整数N和K.
Output
最后的牛群数.
Sample Input
6 2 INPUT DETAILS: There are 6 cows and the difference in group sizes is 2.
Sample Output
3 OUTPUT DETAILS: There are 3 final groups (with 2, 1, and 3 cows in them). 6 / \ 2 4 / \ 1 3
HINT
6只奶牛先分成2只和4只.4只奶牛又分成1只和3只.最后有三群奶牛.